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Several chemical indices have been introduced in theoretical chemistry to measure the properties of molecular structures, 
such as atom bond connectivity (ABC) index and geometric-arithmetic (GA) index. Boron nanotubes are attractive because 
of their novel electronic properties due to the presence of multicenter bonds. Their thermal stability and mechanical 
properties are important issues in nanodevice applications and thus require intensive study. Y. Liu et al. [30] predicted a 
new class of boron nanotubes, called the Tri-Hexagonal boron nanotubes, which are constructed from triangles and 
hexagons. In this paper, we present the ABC index, the fourth version of ABC index, GA index and the fifth version of GA 
index for the Tri-Hexagonal boron nanotubes. 
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1. Introduction 
 
Mathematical chemistry is a branch of theoretical 

chemistry in which we discuss and predict the chemical 
structure by using mathematical tools without necessarily 
referring to quantum mechanics [1-3]. Chemical graph 
theory is a branch of mathematical chemistry which 
applies graph theory to mathematical modeling of 
chemical phenomena [4]. This theory has an important 
effect on the development of the chemical sciences. 

Topological indices are the numerical value 
associated with chemical constitution purporting for 
correlation of chemical structure with various physical 
properties, chemical reactivity or biological activity. The 
topological index of a molecule is a non-empirical 
numerical quantity that quantifies the structure and the 
branching pattern of the molecule. Therefore, the 
topological analysis of a molecule involves translating its 
molecular structure into a characteristic unique number (or 
index) that may be considered a descriptor of the molecule 
under examination. Such indices are widely used for 
establishing relationships between the structure of 
molecular graph and their physicochemical properties. 
Topological indices play a vital role in the study of the 
quantitative structure-activity relationship (QSAR) and the 
quantitative structure-property relationship (QSPR). 

In mathematical chemistry, a molecular graph G is a 
simple graph such that its vertices correspond to the atoms 
and the edges to the bond. The degree of a vertex ( )v V G  

is the number of edges incident to v and denoted by ( )Gd v . 

The distance between two vertices u and v is denoted as 
( , )d u v  and is the length of shortest path between u and v 

in graph G. 
There are two major classes of topological indices, 

one is distance based and the other is degree based 
topological index. The notion of topological index was 
firstly introduced by Wiener [5] in 1947, while he was 
working on boiling point of paraffin. He named his index 

as path number. Later on, the path number was renamed 
as Weiner index and then theory of topological index 
started. The Wiener index is a distance based topological 
index and is defined as the sum of distances between all 
pairs of vertices in G. 

The first degree based topological index is Randiܿ́ 
connectivity index ( )G  introduced in 1975 by Milan 
Randiܿ́ [6], who has shown this index to reflect molecular 
branching. Randiܿ́ index is defined as 

 
1

( )
( ) ( )G G

G
d u d v

   

 
In 2009, Estrada et al. [7] introduced atom-bond 

connectivity ( )ABC  index, which it has been applied up 

until now to study the stability of alkanes and the strain 
energy of cycloalkanes [7,8]. In [9], it was shown that 
ABC  index can be used for modeling thermodynamic 

properties of organic chemical compounds. This index is 
defined as follows 

 

( )

( ) ( ) 2
( )

( ) ( )
G G

uv E G G G

d u d v
ABC G

d u d v

 
   

 
Recently, Ghorbani et al. [10] introduced the fourth 

version of the atom-bond connectivity index 4( )ABC  as 

follows 
 

4
( )

( ) ( ) 2
( )

( ) ( )
G G

uv E G G G

u v
ABC G

u v

 
 

 
   

 
where ( )( ) ( )uv E GG Gu d v   and ( )( ) ( ).uv E GG Gv d u  
The first Geometric Arithmetic connectivity index (or 
simply Geometric Arithmetic Index (GA) of a connected 



894                                                                                     Imran Nadeem, Hani Shaker 

 

graph G was introduced by Vukičević et al. [11] in 2009 
and is defined as 

 

( )

2 ( ) ( )
( )

( ) ( )
G G

uv E G G G

d u d v
GA G

d u d v


  

 
The reason for introducing a new index is to gain 

better prediction of properties of molecules. The 
predicting ability of the GA index compared with Randiܿ́ 
index is reasonably better [11-12], for the prediction of 
physico-chemical properties such as entropy, enthalpy of 
vaporization, standard enthalpy of vaporization, enthalpy 
of formation, and a centric factor. Hence, one can think 
that GA index should be considered in the QSAR/QSPR 
researches. 

Recently fifth version of GA index (GA5) is proposed 
by Graovac et al. [13] in 2011 and defined as  
 

 5
( )

2 ( ) ( )
( )

( ) ( )
G G

uv E G G G

u v
GA G

u v

 
 


  

 
Nowadays ABC and GA indices are extensively 

studied by the researchers. The ABC, ABC4, GA and GA5 
indices for carbon fullerene networks and carbon nanotube 
networks are discussed in [14]. For further study of these 
topological indices for various graph families, see [15-19].  

In this paper, we study these topological indices for a 
newly introduced class of nanotubes fabricated from 
carbon nanotubes. This class of nanotubes called the Tri-
Hexagonal boron nanotubes. 

 
2. Tri-Hexagonal Boron Nanotube 
 
The first boron triangular nanotubes were created in 

2004 and formed from a triangular sheet [20-22]. The 
recent discovery of boron triangular nanotubes challenges 
the monopoly of carbon nanotubes (CNTs). Scientists 
believe that boron triangular nanotubes are better than 
carbon nanotubes [20,23,24]. Sohrab Ismail-Beigi [25] 
speculates that if a superconducting nano computer will 
ever built, it might have boron wiring. Lately scientists 
have justified this speculation by discovering the world’s 
smallest superconductor using nano scale molecular 
superconducting boron wires [26]. Boron nanotubes also 
have some better properties compared to CNTs such as 
high chemical stability, high resistance to oxidation at 
high temperatures and are a stable wide band-gap 
semiconductor. Because of these properties, they can be 
used for applications at high temperatures or in corrosive 
environments such as batteries, fuel cells, super 
capacitors, high speed machines as solid lubricant [27]. 
The stability, mechanical and electronic properties of 
boron nanotubes has been discussed in [22, 28]. 

The boron triangular nanotubes are formed from 
CNTs by adding an extra atom to the center of each 
hexagon [29]. Y. Liu et al. [30] predicted a new class of 
boron nanotubes which are constructed from triangles and 
hexagons, called the Tri-Hexagonal boron nanotubes. 

These nanotubes are formed by removing some atoms 
from boron triangular nanotubes. These nanotubes are 
sparser than the other boron nanotubes and after relaxation 
it remains flat and metallic independent of their chirality. 
A three-dimensional perception of Tri-Hexagonal boron 
nanotube is shown in Fig. 1.  

 
Fig. 1. Three-dimensional perception of Tri-Hexagonal  

boron nanotube. 
 
 

We denote this nanotube by  3 6 [ , ]C C H p q
 
where p is 

the number of hexagons in one column and q is the 
number of hexagons in one row in two-dimensional lattice 
of  3 6 [ , ]C C H p q

 
nanotube. This nanotube has 8 pq  

number of vertices and (18 1)q p number of edges. The 

graph of  3 6 [ , ]C C H p q  nanotube is shown in the Fig. 2. 

 

 
 

Fig. 2. The graph of  3 6 [ , ]C C H p q  nanotube. 
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3. Main Results 
 

In this section, we present our main results. In the 
following, we determine ABC index and fourth version of 
ABC index of  3 6 [ , ]C C H p q  nanotube. 

Theorem 1.  Consider the Tri-Hexagonal boron 
nanotube  3 6 [ , ]C C H p q  , then 

  3 6

5 30 60 7 16 10
[ , ]

10 5

24 2 30 12 7
                                  +

4 5

ABC C C H p q pq

q

  
   
 

  
  
 

 

 
Proof. Consider the Tri-Hexagonal boron nanotube 

 3 6 [ , ].G C C H p q  There are four partitions of edge set 

correspond to their degree of end vertices which are 
 

1

2

3

4

{ ( ) | ( ) 3 and ( ) 5}

{ ( ) | ( ) ( ) 4}

{ ( ) | ( ) 4 and ( ) 5}

{ ( ) | ( ) ( ) 5}

G G

G G

G G

G G

E uv E G d u d v

E uv E G d u d v

E uv E G d u d v

E uv E G d u d v

   
   

   
   

 

 
The representatives of these partite sets are shown in 

Figure 3, in which red, green, black and blue edges are 
edges belong to 1E , 2E , 3E  and 4E  respectively. 

 
 

Fig. 3. The graph of  3 6 [ , ]C C H p q
 nanotube with 

p=2 and q=5. 
 

The Table 1 shows the partition of edge set of G 
correspond to their degree of end vertices. 
 
 
 
 
 
 
 

Table 1: The edge partition of G correspond to degree 
of end vertices. 

 

    ,G Gd u d v             Number of Edges        

                (3,5)                                6q                       
                (4,4)                            q(2p-1) 
                (4,5)                          6q(2p-1)        
                (5,5)                                               4pq   

 
Now we apply the formula of ABC  to compute this index 
for G . 
 

1 2

3 4

( )

( ) ( ) 2
( )

( ) ( )

( ) ( ) 2 ( ) ( ) 2

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) 2

( ) ( ) ( ) ( )

3 5 2 4 4 2
(6 ) (2 1)

3 5 4 4

4 5
6 (2 1)

G G

uv E G G G

G G G G

uv E uv EG G G G

G G G G

uv E uv EG G G G

d u d v
ABC G

d u d v

d u d v d u d v

d u d v d u d v

d u d v d u d v

d u d v d u d v

q q p

q p



 

 

 


   
 

   
 

   
  

 

 
 



 

 

2 5 5 2
4

4 5 5 5
pq

 


 
After simplification, we get  

  5 30 60 7 16 10

10 5

24 2 30 12 7
                +

4 5

ABC G pq

q

  
   
 
  
  
 

 

 

The fourth

 

version of ABC index for  3 6 [ , ]C C H p q
 

nanotube is computed as follows. 

 
Theorem 2.  Consider the Tri-Hexagonal boron 

nanotube  3 6 [ , ]C C H p q  , then 

  4 3 6

12 39 2 42 12
[ , ]

11 19418

2 34 2 37 4 38 2 13
                

3 35 95 399 35

2 11 12 39 2 42 6
                

5 11 19418

ABC C C H p q pq

q

q

 
    
 

 
     
 
 

     
 

 

 
Proof. Consider the Tri-Hexagonal boron nanotube 

 3 6 [ , ]G C C H p q . There are eight partitions of the edge 

set correspond to their degree sum of neighbors of end 
vertices which are  
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1

2

3

4

5

6

7

{ ( ) | ( ) 15 and ( ) 20}

{ ( ) | ( ) 15 and ( ) 21}

{ ( ) | ( ) ( ) 19}

{ ( ) | ( ) 19 and ( ) 20}

{ ( ) | ( ) 19 and ( ) 21}

{ ( ) | ( ) 19 and ( ) 22}

G G

G G

G G

G G

G G

G G

E uv E G u v

E uv E G u v

E uv E G u v

E uv E G u v

E uv E G u v

E uv E G u v

E

 
 
 
 
 
 

   

   

   

   

   

   



8

{ ( ) | ( ) 20 and ( ) 21}

{ ( ) | ( ) ( ) 22}
G G

G G

uv E G u v

E uv E G u v

 
 

  

   

 

 
The representatives of these partite sets are shown in 

Figure 4, in which red, sky blue, green, purple, pink, 
black, yellow and blue edges are the edges belong to  1E , 

2E , 3E , 4E , 5E , 6E , 7E  and 8E  respectively. 

 
 

Fig. 4. The graph of  3 6 [ , ]C C H p q
 nanotube with                  

p=2 and q=5. 
 

The Table 2 shows the partition of edge set of G 
correspond to their degree sum of neighbors of end 
vertices. 
 

Table 2: The edge partition of G correspond to degree 
sum of neighbors of end vertices. 

 

    ,G Gu v              Number of Edges        

              (15,20)                              4q                       
              (15,21)                              2q 
              (19,19)                         (2 1)q p          

              (19,20)                                              2q   

              (19,21)                             4q 
              (19,22)                       12 ( 1)q p   

              (20,21)                             4q 
              (22,22)                         4 ( 1)q p   

 
Now we apply the formula of 4ABC  to compute this 

index for G. 

1 2

3 4

4
( )

( ) ( ) 2
( )

( ) ( )

( ) ( ) 2 ( ) ( ) 2

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) 2

( ) ( ) ( ) ( )

G G

uv E G G G

G G G G

uv E uv EG G G G

G G G G

uv E uv EG G G G

u v
ABC G

u v

u v u v

u v u v

u v u v

u v u v

 
 

   
   

   
   



 

 

 


   
 

   
 



 

 
 

5 6

7 8

( ) ( ) 2 ( ) ( ) 2

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) 2

( ) ( ) ( ) ( )

15 20 2 15 21 2
4 2

15 20 15 21

19 19 2 19 20 2
(2 1) 2

19 19 19 20

19 21 2
4

19 21

G G G G

uv E uv EG G G G

G G G G

uv E uv EG G G G

u v u v

u v u v

u v u v

u v u v

q q

q p q

q

   
   

   
   

 

 

   
 

   
 

   
 

 

   
  

 

 




 

 

19 22 2
12 ( 1)

19 22

20 21 2 22 22 2
4 4 ( 1)

20 21 22 22

q p

q q p

 
 



   
  

 

 

 
After simplification, we get  
 

 4

12 39 2 42 12

11 19418

2 34 2 37 4 38 2 13
                

3 35 95 399 35

2 11 12 39 2 42 6
                

5 11 19418

ABC G pq

q

q

 
    
 
 

     
 
 

     
 

 

 
In the next theorem, we compute geometric-

arithmetic (GA) index of   3 6 [ , ]C C H p q  nanotube. 
Theorem 3.  Consider the Tri-Hexagonal boron 

nanotube  3 6 [ , ]C C H p q  , then 

 

  3 6

16 5 18
[ , ]

3

9 15 16 5 6
                              

6

GA C C H p q pq

q

 
   
 

  
   
 

 

 
Proof. Consider the Tri-Hexagonal boron nanotube 

 3 6 [ , ]G C C H p q . From Table 1, we have the partition of 

edge set of G correspond to their degree of end vertices. 
Now we apply the formula of  GA   to compute this index 
for G. 
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 
   

    

   
   

   
   

   
   

   
   

1 2

3 4

2

2 2

2 2

G G

uv E G G G

G G G G

uv E uv EG G G G

G G G G

uv E uv EG G G G

d u d v
GA G

d u d v

d u d v d u d v

d u d v d u d v

d u d v d u d v

d u d v d u d v



 

 




 
 

 
 



 

 

 

   

   

2 3 5 2 4 4
6 2 1

3 5 4 4

2 4 5 2 5 5
6 2 1 4

4 5 5 5

q q p

q p pq

 
  

 
 

  
 

 

 
After simplification, we get  
 

  16 5 18 9 15 16 5 6

3 6
GA G pq q

     
       
     

 
 

The fifth version of GA index is computed in the 
following theorem. 

 
Theorem 4.  Consider the Tri-Hexagonal boron 

nanotube  3 6 [ , ]C C H p q  , then 

 

  5 3 6 [ , ]

24 418 16 3 35
              6

41 7 3

8 95 8 399 16 105 24 418
          5

39 40 41 41

GA C C H p q

pq q

q



   
        

   
 

      
 

 

 
 

Proof. Consider the Tri-Hexagonal boron nanotube 
 3 6 [ , ]G C C H p q . From Table 2, we have the partition of 

edge set of G correspond to their degree sum of neighbors 
of end vertices. 
Now we apply the formula of  5GA   to compute this index 

for G. 

1 2

3 4

5 6

5
( )

2 ( ) ( )
( )

( ) ( )

2 ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( ) 2 ( ) ( )

( ) ( )

G G

uv E G G G

G G G G

uv E uv EG G G G

G G G G

uv E uv EG G G G

G G G G

uv E uv EG G

u v
GA G

u v

u v u v

u v u v

u v u v

u v u v

u v u v

u v

 
 

   
   

   
   

   
 



 

 

 




 
 

 
 

 




 

 

 

7 8

( ) ( )

2 ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

2 15 20 2 15 21
4 2

15 20 15 21

2 19 19 2 19 20
(2 1) 2

19 19 19 20

2 19 21 2 19 22
4 12 ( 1)

19 21 19 22

2 20 21 2 22 22
4 4 ( 1)

20 21 22 22

G G

G G G G

uv E uv EG G G G

u v

u v u v

u v u v

q q

q p q

q q p

q q p

 

   
    



 
 

 
 

 
 

  
 

 
  

 
 

  
 

 

 
After simplification, we get  
 

 5

24 418 16 3 35
6

41 7 3

8 95 8 399 16 105 24 418
         5

39 40 41 41

GA G pq q

q

   
         
   

 
      
 

 

 
 

4. Conclusions 
 

Topological indices play a vital role in the study of 
physicochemical properties of chemical compounds. 
Degree based topological indices have got a prominent 
place in this study due to prediction of various chemical 
properties such as stability, enthalpy etc. with high 
predictive power. To compute and study these topological 
indices for various nanostructures is a respected problem 
in nanotechnology. In this study, we compute various 
degree based topological indices of Tri-Hexagonal boron 
nanotubes. These results give valuable information 
regarding chemical properties of these nanotubes. 
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